input license here

Tổng hợp lý thuyết Cơ sở vật chất của hiện tượng di truyền và biến dị - Sinh Học 12

Thế kỷ XXI là thế kỷ của sinh học. Chưa bao giờ Sinh học lại phát triển mạnh mẽ như những năm cuối thế kỷ XX và đầu thế kỷ XXI này. Các số liệu thống kê cho thấy cứ vài năm, kiến thức về sinh học lại tăng gấp đôi . Vậy làm thế nào để học sinh có thể nắm bắt được những kiến thức rất mới và rất khó của sinh học ngày nay ? Đặc biệt là những  nội dung kiến thức dành cho học sinh các trường Chuyên. Vì lẽ đó, trong bài viết này chúng tôi sẽ gửi đến các em tổng ôn kiến thức chương 1 của chương trình Sinh Học 12 Cơ sở vật chất của hiện tượng di truyền và biến dị. Chúc các em học tập tốt với các kiến thức được cung cấp.

Tổng hợp lý thuyết Cơ sở vật chất của hiện tượng di truyền và biến dị - Sinh Học 12
Tổng hợp lý thuyết Cơ sở vật chất của hiện tượng di truyền và biến dị - Sinh Học 12

{tocify} $title={Xem nhanh}

A - CƠ SỞ VẬT CHẤT CỦA HIỆN TƯỢNG DI TRUYỀN VÀ BIẾN DỊ Ở CẤP ĐỘ PHÂN TỬ

I.  CẤU TRÚC CỦA AXIT NUCLEIC

1. Cấu trúc ADN
a) Cấu tao hóa học của ADN
- ADN luôn tồn tại trong nhân tế bào và có mặt ở cả ti thể, lạp thể. ADN chứa các nguyên tố hóa học chủ yếu C, H, O, N và P.
- ADN là đại phân tử, có khối lượng phân tử lớn, chiều dài có thể đạt tới hàng trăm micromet khối lượng phân tử có từ 4 đến 8 triệu, một số có thể đạt tới 16 triệu đvC.
-  ADN cấu tạo theo nguyên tắc đa phân, mỗi nucleotit có ba thành phần, trong đó thành phần cơ bản là bazơnitric. Có 4 loại nuleotit mang tên gọi của các bazơnitric, trong đó A và G có kích thước lớn, T và X có kích thước bé.
- Trên mạch đơn của phân tử ADN các đơn phân liên kết với nhau bằng liên kết hoá trị là liên kết được hình thành giữa đường C5H10O4 của nucleotit này với phân tử H3PO4 của nucleotit kế tiếp. Liên kết hoá trị là liên kết rất bền đảm bảo cho thông tin di truyền trên mỗi mạch đơn ổn định kể cả khi ADN tái bản và phiên mã.
- Từ 4 loại nucleotit có thể tạo nên tính đa dạng và đặc thù của ADN ở các loài sinh vật bởi số lượng, thành phần, trình tự phân bố của nucleotit.
b) Cấu trúc không gian của ADN (Mô hình Oatxơn và Crick)
+ ADN là một chuỗi xoắn kép gồm 2 mạch đơn (mạch polinucleotit) quấn song song quanh một trục tưởng tượng trong không gian theo chiều từ trái sang phải (xoắn phải) như một thang dây xoắn: tay thang là phân tử đường (C5H10O4) và axit photphoric sắp xếp xen kẽ nhau, mỗi bậc thang là một cặp bazơnitric đứng đối diện và liên kết với nhau bằng liên kết hiđro theo nguyên tắc bổ sung (NTBS). Đó là nguyên tắc A của mạch đơn này có kích thước lớn bổ sung với T của mạch đơn kia có kích thước bé và nối với nhau bằng 2 liên kết hiđro. G của mạch đơn này có kích thước lớn bổ sung với X của mạch đơn kia có kích thước bé và nối với nhau bằng 3 liên kết hiđro và ngược lại.
+ Trong phân tử ADN, do các cặp nucleotit liên kết với nhau theo NTBS đã đảm bảo cho chiều rộng của chuỗi xoắn kép bằng 20 Ǻ, khoảng cách giữa các bậc thang trên các chuỗi xoắn bằng 3,4 Ǻ, phân tử ADN xoắn theo chu kì xoắn, mỗi chu kì xoắn có 10 cặp nucleotit, có chiều cao 34 Ǻ.
- ADN của một số virut chỉ gồm một mạch polinucleotit. ADN của vi khuẩn và ADN của lạp thể, ti thể lại có dạng vòng khép kín.
c) Tính đặc trưng của phân tử ADN
+ ADN đặc trưng bởi số lượng, thành phần trình tự phân bố các nucleotit, vì vậy từ 4 loại nucleotit đã tạo nên nhiều loại phân tử ADN đặc trưng cho mỗi loài.
+ ADN đặc trưng bởi tỉ lệ  
+ ADN đặc trưng bởi số lượng, thành phần trình tự phân bố các gen trong từng nhóm gen liên kết.
2. Cấu trúc ARN
- ARN là một đa phân tử được cấu tạo từ nhiều đơn phân.
- Có 4 loại ribonucleotit tạo nên các phân tử ARN: Ađenin, Uraxin, Xitozin, Guanin, mỗi đơn phân gồm 3 thành phần: bazơnitric, đường ribozơ (C5H10O5) và H3PO4.
- Trên phân tử ARN các ribonucleotit liên kết với nhau bằng liên kết hoá trị giữa đường C5H10O5 của ribonucleotit này với phân tử H3PO4 của ribonucleotit kế tiếp.
- Có 3 loại ARN: rARN chiếm 70-80%, tARN chiếm 10-20%, mARN chiếm 5-10%.
- Mỗi phân tử mARN có khoảng 600 đến 1500 đơn phân, tARN gồm 80 đến 100 đơn phân, trong tARN ngoài 4 loại ribonucleotit kể trên còn có 1 số biến dạng của các bazơnitric (trên tARN có những đoạn xoắn giống cấu trúc ADN, tại đó các ribonucleotit liên kết với nhau theo NTBS (A-U, G-X). Có những đoạn không liên kết được với  nhau theo NTBS vì chứa những biến dạng của các bazơnitric, những đoạn này tạo thành những thuỳ tròn. Nhờ cách cấu tạo như vậy nên mỗi tARN có hai bộ phận quan trọng: bộ ba đối mã và đoạn mang axit amin có tận cùng là adenin.
- Phân tử rARN có dạng mạch đơn, hoặc quấn lại tương tự tARN trong đó có tới 70% số ribonucleotit liên kết với nhau theo nguyên tắc bổ sung. Trong tế bào nhân sơ có 3 loại rARN (23S, 5S và 16S); ở sinh vật nhân thật có tới 6 loại rARN (28S, 23S, 18S, 16S, 5,8S, 5S) với số ribonucleoti từt 120 đến 5000/1 phân tử.
- Ngoài ba loại ARN tồn tại trong các loài sinh vật mà vật chất di truyền là ADN thì ở những loài virut vật chất di truyền là ARN thì ARN của chúng có dạng mạch đơn, một vài loại  có ARN 2 mạch.

II. CẤU TRÚC PROTEIN

1. Cấu trúc hoá học
- Là hợp chất hữu cơ gồm 4 nguyên tố cơ bản C, H. O, N thường có thêm S và đôi lúc có P.
- Thuộc loại đại phân tử, phân tử lớn nhất dài 0,1 micromet, phân tử lượng có thể đạt tới 1,5 triệu đvC.
- Thuộc loại đa phân tử, đơn phân là các axit amin.
- Có 20 loại axit amin tạo nên các protein, mỗi axit amin có 3 thành phần: gốc cacbon (R), nhóm amin (-NH2), nhóm cacboxyl (-COOH), chúng khác nhau bởi gốc R. Mỗi axit amin có kích thước trung bình 3Ǻ.
- Trên phân tử protein, các axit amin liên kết với nhau bằng liên kết peptit đó là liên kết giữa nhóm amin của axit amin này với nhóm cacboxyl của axit amin bên cạnh cùng nhau mất đi một phân tử nước. Nhiều liên kết peptit tạo thành một chuỗi polipeptit. Mỗi phân tử protein có thể gồm một hay một số chuỗi polipeptit cùng loại hay khác loại.
- Từ 20 loại axit amin đã tạo nên khoảng $10^{14} – 10^{15}$ loại protein đặc trưng cho mỗi loài. Các phân tử protein phân biệt với nhau bởi số lượng thành phần, trình tự phân bố các axit amin. 
2. Cấu trúc không gian
Có 4 bậc cấu trúc không gian
- Cấu trúc bậc I: do các axit amin liên kết với nhau bằng liên kết peptit, đứng ở đầu mạch polipeptit là nhóm amin, cuối mạch là nhóm cacboxyl.
- Cấu trức bậc II: có dạng xoắn trái, kiểu xoắn anpha, chiều cao một vòng xoắn 5,4 Ǻ, với 3,7 axit amin/1 vòng xoắn còn ở chuỗi bêta mỗi vòng xoắn lại có 5,1 axit amin. Có những protein không có cấu trúc xoắn hoặc chỉ cuộn xoắn ở một phần của polipeptit.
- Cấu trúc bậc III: là hình dạng của phân tử protein trong không gian ba chiều, do xoắn cấp II cuộn theo kiểu đặc trưng cho mỗi loại protein, tạo thành những khối hình cầu.
- Cấu trúc bậc IV: là những protein gồm 2 hoặc nhiều chuỗi polipeptit kết hợp với nhau. Ví dụ, phân tử hemoglobin gồm 2 chuỗi anpha và 2 chuỗi bêta, mỗi chuỗi chứa một nhân hem với một nguyên tử Fe.
3. Tính đặc trưng và tính nhiều dạng của protein
- Protein đặc trưng bởi số lượng thành phần, trình tự phân bố các axit amin trong chuỗi polipeptit. Vì vậy, từ 20 loại axit amin đã tạo nên $10^{14} – 10^{15}$ loại protein rất đặc trưng và đa dạng cho mỗi loài sinh vật.
- Protein đặc trưng bởi số lượng thành phần trình tự phân bố các chuỗi polipeptit trong mỗi phân tử protein.
- Protein đặc trưng bởi các kiểu cấu trúc không gian của các loại protein để thực hiện các chức năng sinh học.

III. CƠ CHẾ TỔNG HỢP ADN, ARN VÀ PROTEIN

1. Cơ chế tổng hợp ADN
- Dưới tác động cửa enzim ADN – polimeraza, các liên kết hiđro trên phân tử ADN bị 
cắt, 2 mạch đơn của ADN tách nhau ra, trên mỗi mạch đơn các nucleotit lần lượt liên kết với các nucleotit tự do của môi trường theo NTBS. Kết quả từ một phân tử ADN mẹ hình thành 2 phân tử ADN con, trong mỗi ADN con có một mạch là nguyên liệu cũ, một mạch là nguyên liệu mới được xây dựng nên, theo nguyên tắc bán bảo toàn.
- Sự tổng hợp ADN là cơ sở hình thành NST, đảm bảo cho quá trình phân bào nguyên phân, giảm phân, thụ tinh xảy ra bình thường, thông tin di truyền của loài được ổn định. Ở cấp độ tế bào và cấp độ phân tử qua các thế hệ. Nhờ đó con sinh ra giống với bố mẹ, ông bà tổ tiên.
2. Cơ chế tổng hợp mARN
- Dưới tác dụng của enzim ARN – polimeraza. Các liên kết hiđro trên một đoạn phân tử ADN ứng với một hay một số gen lần lượt bị cắt đứt, quá trình lắp ráp các ribonucleotit tự do của một trường nội bào với các nucleotit trên mạch mã gốc của gen (mạch 3’ – 5’) theo NTBS A-U, G-X xảy ra. Kết quả tạo ra các mARN có chiều 5’-3’. Sau đó 2 mạch gen lại liên kết với nhau theo NTBS. Sự tổng hợp tARN và rARN chũng theo cơ chế trên.
- Ở sinh vật trước nhân sự phiên mã cùng một lúc nhiều phân tử mARN, các mARN được sử dụng này trở thành bản phiên mã chính thức. Còn ở sinh vật nhân chuẩn sự phiên mã từng mARN riêng biệt, các mARN này sau đó phải được chế biến lại bằng cách loại bỏ các đoạn vô nghĩa, giữ lại các đoạn có nghĩa tạo ra mARN trưởng thành.
- Sự tổng hợp ARN đảm bảo cho quá trình dịch mã chính xác ở tế bào chất để tạo nên các protein cần thiết cho tế bào.
3. Cơ chế tổng hợp protein
Gồm 2 giai đoạn:
Giai đoạn 1: Tổng hợp ARN để chuyển thông tin di truyền từ gen sang sản phẩm protein
Giai đoạn 2: Tổng hợp protein ở tế bào chất gồm 4 bước cơ bản.
+ Bước 1: Hoạt hoá các axit amin: Các axit amin được hoạt hoá bằng nguồn năng lượng ATP rồi mỗi axit amin được gắn vào một tARN để đi vào riboxom thành dòng liên tục.
+ Bước 2: Mở đầu chuỗi polipeptit: Có sự thanh gia của riboxom, bộ ba mở đầu AUG, tARN mang axit amin mở đầu tiến vào riboxom đối mã của nó khớp với mã mở đầu trêm mARN theo NTBS.
+ Bước 3: Kéo dài chuỗi polipeptit: tARN vận chuyển axit amin thứ nhất tiến vào riboxom đối mã của nó khớp với mã thứ nhất trến mARN theo NTBS, một liên kết peptit được hình thành giữa axit amin mở đầu với axit amin thứ nhất. Riboxom chuyển dịch sang bộ ba thứ 2 đẩy tARN axit amin mở đầu ra ngoài. Lập tức tARN axit amin thứ 2 tiến vào riboxom đối mã của nó lắp ráp với mã bộ ba trên mARN theo NTBS. Cứ tiến hành theo phương thức đó cho đến tận bộ ba tiếp giáp với bộ ba kết thúc chuỗi polipeptit lúc này có cấu trúc \(a{a_{MD}} - a{a_1} - a{a_2}...a{a_n}\) vẫn còn gắn với tARN axit amin thứ n.
+ Bước 4: Kết thúc chuỗi polipeptit: Riboxom chuyển dịch sang bộ ba kết thúc lúc này ngừng quá trình dịch mã 2 tiểu phần của riboxom tách nhau ra tARN axit amin cuối cùng được tách khỏi chuỗi polipeptit. Một enzim khác loại bỏ axit amin mở đầu giải phóng chuỗi polipeptit.
Trên mỗi mARN cùng lúc có thể có nhiều riboxom trượt qua với khoảng cách là 51Ǻ → 102 Ǻ, nghĩa là trên mỗi mARN có thể tổng hợp nhiều protein cùng loại.
Sự tổng hợp protein góp phần thực hiện chức năng biểu hiện tính trạng, cung cấp nguyên liệu cấu tạo nên các bào quan và đảm nhận nhiều chức năng khác nhau.

IV. CHỨC NĂNG CỦA ADN, ARN VÀ PROTEIN

1. Chức năng của ADN
+ Chứa thông tin di truyền, thông tin đặc trưng cho mỗi loại bởi trình tự phân bố các nucleotit trên phân tử ADN
+ Có khả năng nhân đôi chính xác để truyền thông tin di truyền qua các thể hệ.
+ Chứa các gen khác nhau, giữ chức năng khác nhau.
+ Có khả năng đột biến tạo nên thông tin di truyền mới.
2. Chức năng của các loại ARN được tổng hợp từ ADN
- Chức năng của mARN: bản phiên thông tin di truyền từ gen cấu trúc, trực tiếp tham gia tổng hợp protein dụa trên cấu trúc và trình tự các bộ ba trên mARN.
- Chức năng của tARN: vận chuyển lắp ráp chính xác các axit amin vào chuối polipeptit dựa trên nguyên tắc đối mã di truyền giữa bộ ba đối mã trên tARN với bộ ba mã phiên trên mARN.
- Chức năng của rARN: liên kết với các phân tử protein tạo trên các riboxom tiếp xúc với mARN và chuyển dịch từng bước trên mARN, mỗi bước là một bộ ba nhờ đó mà lắp ráp chính xác các axit amin vào chuỗi polipeptit theo đúng thông tin di truyền được quy định từ gen cấu trúc.
3. Chức năng của protein
- Là thành phần cấu tạo chủ yếu chất nguyên sinh hợp phần quan trọng xây dựng nên các bào quan, màng sinh chất…
- Tạo nên các enzim xúc tác các phản ứng sinh hoá.
- Tạo nên các hoocmon có chức năng điều hoà quá trình trao đổi chất trong tế bào, cơ thể.
- Hình thành các kháng thể, có chức năng bảo vvệ cơ thể chống lại các vi khuẩn gây bệnh.
- Tham gia vào chức năng vận động của tế bào và cơ thể.
- Phân giải protein tạo năng lượng cung cấp cho các hoạt động sống của tế bào và cơ thể.
-Tóm lại protein đảm nhận nhiều chức năng liên quan đến toàn bộ hoạt động sống của tế bào, quy định tính trạng của cơ thể sống.

V. SỰ ĐIỀU HOÀ HOẠT ĐỘNG CỦA GEN

Cơ chế điều hoà sinh tổng hợp protein của gen rất phức tạp, có sự khác biệt rõ rệt giữa sinh vật trước nhân và sinh vật nhân chuẩn. Sau đây là cơ chế điều hoà ở sinh vật trước nhân:
- Trong tế bào có rât nhiều gen cấu trúc, không phải các gen đó đều phiên mã, tổng hợp protein đồng thời. Sự điều hoà hoạt động của gen được thực hiện qua cơ chế điều hoà. Vào năm 1961, F.Jacop và J.Mono đã phát hiện sự điều hoà hoạt động của gen ở E.coli
- Một mô hình điều hoà bao gồm các hệ thống gen sau:
+ Một gen điều hoà (R), gen này làm khuôn sản xuất một loại protein ức chế có tác dụng điều chỉnh hoạt động của một nhóm gen cấu trúc qua tương tác với gen chỉ huy.
+ Một gen chỉ huy (O) nằm kề trước nhóm gen cấu trúc, là vị trí tương tác với chất ức chế.
+ Một gen khởi động (P) nằm trước gen chỉ huy và có thể trùm lên một phần hoặc toàn bộ gen này, đó là vị trí tương tác của ARN – polimeraza để khởi đầu phiên mã.
+ Một nhóm gen cấu trúc liên quan với nhau về chức năng, nằm kề nhau cùng phiên mã tạo ra một sợi mARN chung đối với sinh vật trước nhân, còn sinh vật nhân chuẩn phiên mã chỉ tạo ra 1 mARN riêng biệt.
Một operon chỉ gồm có gen chỉ huy và các gen cấu trúc do nó kiểm soát.
- Cơ chế điều hoà diễn ra như sau:
Gen điều hoà chỉ huy tổng hợp  một loại protein ức chế, protein này gắn vào gen chỉ huy (O) làm ngăn cản hoạt động của enzim phiên mã. Vì vậy ức chế hoạt động tổng hợp ARN của các gen cấu trúc. Khi trong môi trường nội bào có chất cảm ứng, chất này kết hợp với protein ức chế làm vô hiệu hoá chất ức chế, không gắn vào gen chỉ huy. Kết quả là gen chỉ huy làm cho nhóm gen cấu trúc chuyển từ trạng thái ức chế sang trạng thái hoạt động. Quá trình phiên mã lại xảy ra.
Cơ chế điều hoà ở sinh vật nhân chuẩn rất phức tạp đến nay còn nhiều vấn đề chưa rõ.

VI. MÃ DI TRUYỀN, ĐẶC ĐIỂM CỦA MÃ DI TRUYỀN

1. Khái niệm mã bộ ba
Cứ 3 nucleotit cùng loại hay khác loại đứng kế tiếp nhau trên phân tử ADN hoặc trên mARN mã hoá cho 1 axit amin hoặc làm nhiệm vụ kết thức chuỗi polipeptit gọi là mã bộ ba.
2. Mã di truyền là mã bộ ba
- Nếu mỗi nucleotit mã hoá 1 axit amin thì 4 loại nucleotit chỉ mã hoá được 4 loại axit amin.
- Nếu cứ 2 nucleotit cùng loại hay khác loại mã hoá cho 1 axit amin thì chỉ tạo được $4^2 = 16$ mã bộ ba không đủ để mã hoá cho 20 loại axit amin.
- Nếu theo nguyên tắc mã bộ ba sẽ tạo được $4^3 = 64$ mã bộ ba đủ để mã hoá cho 20 loại axit amin.
- Nếu theo nguyên tắc mã bộ bốn sẽ tạo được $4^4 = 256$ bộ mã hoá lại quá thừa. Vậy về mặt suy luận lí thuyết mã bộ ba là mã phù hợp.
Trong nghiên cứu, khi thêm bớt 1, 2, 3 nucleotit trong gen, người ta nhận thấy mã bộ ba là mã phù hợp và đã xác định được có 64 bộ ba được sử dụng để mã hoá axit amin. Trong đó có Metionin ứng với mã mở đầu TAX đó là tín hiệu bắt đầu sự tổng hợp chuối polipeptit. Ba bộ ba còn lại ATT, ATX, AXT là mã kết thúc.
Hai mươi loại axit amin được mã hoá bởi 61 bộ ba. Như vậy mỗi axit amin được mã hoá bởi 1 số bộ ba. Ví dụ, lizin ứng với 2 bộ ba AAA, AAG, một số axit amin được mã hoá bởi nhiều bộ ba như alanin ứng với 4 bộ ba, lơxin ứng với 6 bộ ba.
3. Những đặc điểm cơ bản của mã di truyền
- Mã di truyền được đọc theo một chiều 5’ – 3’ trên phân tử mARN.
- Mã di truyền được đọc liên tục theo từng cụm 3 nucleotit, các bộ ba không đọc gối lên nhau.
- Mã di truyền là đặc hiệu không một bộ ba nào mã hoá đồng thời 2 hoặc một số axit amin khác nhau.
- Mã di truyền có tính thoái hoá có nghĩa là mỗi axit amin được mã hoá bởi một số bộ ba khác loại trừ metionin, Triptophan chỉ được mã hoá bởi một bộ ba). Nhờ đó mà gen đảm bảo được thông tin di truyền và xác nhận trong bộ ba 2 nucleotit đầu là quan trọng còn nucleotit thứ 3 có thể linh hoạt . Sự linh hoạt này có thể không gây hậu quả gì. Nhưng cũng có thể gây nên sự lắp ráp nhầm các axit amin trong chuỗi polipeptit.
- Mã di truyền có tính phổ biến: tất cả các loài sinh vật đều được mã hoá theo một nguyên tắc chung (các từ mã giống nhau), Điều này phản ảnh nguồn gốc chung của các loài.
- Mã di truyền có mã mở đầu, có mã kéo dài chuỗi polipeptit và mã kết thúc

VII. ĐỘT BIẾN GEN

1. Khái niệm
Đột biến gen là những biến đổi trong cấu trúc phân tử của gen liên quan tới một hay một số cặp nucleotit xảy ra tại một điểm nào đó của phân tử ADN biểu hiện ở các dạng: mất, thêm, thay thế 1 cặp nucleotit.
2. Nguyên nhân và cơ chế
a) Nguyên nhân
- Đột biến gen phát sinh do tác nhân gây đột biến lí hoá trong ngoại cảnh hoặc rối loạn trong các quá trình sinh lí, hoá sinh của tế bào gây nên những sai sót trong quá trình tự sao của ADN hoặc trực tiếp biến đổi cấu trúc của nó.
- Đột biến gen phụ thuộc vào loại tác nhân, liều lượng, cường độ của tác nhân, đặc điểm cấu trúc của gen.
b) Cơ chế
Sự biến đổi của một nucleotit nào đó thoạt đầu xảy ra trên một mạch của ADN dưới dạng tiền đột biến. Lúc này enzim sửa chữa có thể sửa sai làm cho tiền đột biến trở lại dạng ban đầu. Nếu sai sót không được sửa chữa thì qua lần tự sao tiếp theo nucleotit lắp sai sẽ liên kết với nucleotit bổ sung với nó làm phát sinh đột biến gen.
3.Sự biểu hiện của đột biến gen
- Đột biến gen khi đã phát sinh sẽ được tái bản cùng với sự tái bản của phân tử ADN mang đột biến.
- Nếu đột biến phát sinh trong giảm phân sẽ tạo đột biến giao tử qua thụ tinh đi vào hợp tử. Đột biến trội sẽ biểu hiện ngay ở kiểu hình của cơ thể mang đột biến. Đột biến lặn sẽ đi vào hợp tử ở dạng dị hợp qua giao phối lan truyền dần trong quần thể, trải qua nhiều thế hệ được nhân lên ngày một nhiều, tới một thời điểm nào đó các đột biến lặn trong các giao tử gặp gỡ nhau trong giao phối, hình thành tổ hợp đồng tử lặn, lúc này kiểu hình đột biến lặn mới xuất hiện.
- Khi đột biến xảy ra trong nguyên phân, chúng sẽ phát sinh ở một tế bào sinh dưỡng rồi được nhân lên trong một mô. Nếu là đột biến trội sẽ biểu hiện ở một phần của cơ thể, tạo nên thể khảm.
- Đột biến soma có thể di truyền bằng sinh sản sinh dưỡng nhưng không thể di truyền qua sinh sản hữu tính.
- Đột biến cấu trúc của gen đòi hỏi một số điều kiện mới biểu hiện trên kiểu hình của cơ thể. Vì vậy cần phải phân biệt đột biến là những biến đổi trong vật chất di truyền với thể đột biến là những cá thể mang đột biến đã biểu hiện ở kiểu hình
4. Hậu quả của đột biến gen
- Sự biến đổi trong dãy nucleotit của gen dẫn đến biến đổi trong dãy ribonucleotit của mARN làm biến đổi dãy axit amin của protein tương ứng. Cuối cùng biểu hiện thành một biến đổi đột ngột, gián đoạn về một hoặc một số tính trạng nào đó trên một hoặc một số ít cá thể trong quần thể.
- Đột biến gen gây rối loạn trong quá trình sinh tổng hợp protein, đặc biệt là đột biến ở các gen quy định cấu trúc của các enzim nên đa số đột biến thường có hại cho cơ thể, cũng có nhứng đột biến gen trung tính, một số đột biến lại có lợi.

B – CƠ SỞ VẬT CHẤT CỦA HIỆN TƯỢNG DI TRUYỀN VÀ BIẾN DỊ Ở CẤP ĐỘ TẾ BÀO

I. CẤU TRÚC VÀ TÍNH ĐẶC TRƯNG CỦA NST

1. Khái niệm NST
NST là thể vật chất di truyền tồn tại trong nhân tế bào bị bắt màu bằng thuốc nhuộm kiềm tính, có số lượng, hình dạng, kích thước, cấu trúc đặc trưng: NST có khả năng tự nhân đôi, phân li, tổ hợp ổn định qua các thế hệ.
2.Cấu trúc của NST
- Ở virut, thể ăn khuẩn, NST chỉ là một phân tử ADN trần. Ở sinh vật có nhân, NST cấu trúc phức tạp.
- Sau khi nhân đôi mỗi NST có 2 cromatit, mỗi cromatit có 1 sợi phân tử ADN mà có một nửa nguyên liệu cũ và một nửa nguyên liệu mới được lấy từ môi trường tế bào. Các cromatit này đóng xoắn cực đại ở kì giữa nên chúng có hình dạng và kích thước đặc trưng. Mỗi NST có 2 cromatit đính nhau ở tâm động tại eo thứ nhất. Một số NST còn có eo thứ 2 là nơi tổng hợp rARN. Các rARN tích tụ lại tạo nên nhân con. Lúc bước vào phân bào, NST ngừng hoạt động, nhân con lại tái hiện.
- NST có nhiều hình dạng khác nhau: hình hạt, hình que, hình chữ V, hình móc. Ở một số loài sinh vật trong vòng đời có trải qua giai đoạn ấu trùng có xuất hiện các NST với kích thước lớn hàng nghìn lần gọi là NST khổng lồ (như ở ấu trùng ruồi giấm và các loài thuộc bộ 2 cánh). Điển hình là NST có hình chữ V với 2 cánh kích thước bằng nhau hoặc khác nhau. Chiều dài của NST từ 0,2 đến 50 μm, chiều ngang 0,2 đến 2 μm.
- NST được cấu tạo bởi ADN và protein. Phân tử ADN quấn quanh khối cầu protein tạo nên nucleoxom. Mỗi nucleoxom gồm 8 phân tử protein histon tạo nên khối hình cầu dẹt phía ngoài được bao bọc bởi $1\dfrac{3}{4}$ vòng xoắn ADN khoảng 146 cặp nucleotit. Các nucleoxom nối với nhau bằng các đoạn ADN và một protein histon H1. Mỗi đoạn có khoảng 15 – 100 cặp nucleotit. Tổ hợp ADN với histon trong chuỗi nucleoxom tạo thành sợi cơ bản có chiều ngang 100 Ǻ, sợi cơ bản cuộn xoắn thứ cấp tạo nên sợi nhiễm sắc có chiều ngang 250 – 300 Ǻ. Sợi nhiễm sắc tiếp tục đóng xoắn tạo nên ống rỗng với bề ngang 2000 Ǻ, cuối cùng hình thành cromatit có đường kính tới 6000Ǻ.
- Do có cấu trúc xoắn cuộn như vậy nên chiều dài của NST đã được rút ngắn 15000 – 20000 lần so với chiều dài phân tử ADN, NST dài nhất của người chứa phân tử ADN dài 82 mm, sau khi xoắn cực đại ở kì giữa chỉ dài 10 μm. Sự thu gọn cấu trúc không gian như thế thuận lợi cho sự phân li, tổ hợp các NST trong chu kì phân bào.
3. Tính đặc trưng của NST
Mỗi loài sinh vật đều có bộ NST đặc trưng:
- Đặc trưng về số lượng, hình dạng, kích thước và cáu trúc. Ở những loài giao phối, tế bào sinh dưỡng mang bộ NST lưỡng bội (2n), NST tồn tại thành cặp tương đồng, trong đó một NST có nguồn gốc từ bố, một NST có nguồn gốc từ mẹ. Tế bào giao tử chứa bộ NST đơn bội.
Ví dụ: Ở người 2n = 46, n = 23;  Ở ngô 2n = 20, n = 10;  Ở lúa 2n = 24, n = 12;
Ở đậu Hà Lan 2n = 14, n = 7…
- Đặc trưng bởi số lượng, thành phần, trình tự phân bố các gen trên mỗi NST.
- Đặc trưng bởi các tập tính hoạt động của NST tái sinh, phân li, tổ hợp, trao đổi đoạn, đột biến về số lượng, cấu trúc NST.

II. CƠ CHẾ HÌNH THÀNH CÁC LOẠI BỘ NST TỪ TẾ BÀO 2n

1. Cơ chế hình thành bộ NST n
- Một nhóm tế bào sinh dưỡng ở các cơ thể trưởng thành được tách ra làm nhiệm vụ sinh sản, gọi là tế bào sinh dục sơ khai. Các tế bào này lần lượt trải qua 3 giai đoạn:
+ Giai đoạn sinh sản: nguyên phân liên tiếp nhiều đợt tạo ra các tế bào sinh dục con.
+ Giai đoạn sinh trưởng: các tế bào tiếp nhận nguyên liệu từ môi trường ngoài để tạo nên các tế bào có kích thước lớn (kể cả nhân và tế bào chất).
+ Giai đoạn chín: các tế bào sinh tinh trùng, sinh trứng bước vào giảm phân gồm 2 lần phân bào liên tiếp để tạo ra các giao tử đơn bội.
+ Giai đoạn sau chín: ở thực vật khi kết thúc giảm phân mỗi tế bào đơn bội hình thành từ tế bào sinh dục đực tiếp tục nguyên phân 2 đợt tạo ra 3 tế bào đơn bội hình thành hạt phấn chín. Mỗi tế bào đơn bội ở mỗi tế bào sinh dục cái lại nguyên phân 3 đợt tạo ra 8 tế bào đơn bội hình thành noãn.
- Giảm phân I:
+ Ở kì trung gian ADN nhân đôi, mỗi cặp NST tương đồng nhân đôi thành cặp NST
 tương đồng kép.
+ Ở kì trước I: NST tiếp tục xoắn lại, kì này tại một số cặp NST tương đồng có xảy ra trao đổi đoạn giưuã 2 cromatit khác nguồn gốc. Cuối kì trước I, màng nhân biến mất, thoi tơ vô sắc bắt đầu hình thành.
+ Ở kì giữa I: thoi tơ vô sắc hình thành xong. Các NST tương đồng kép tập trung thành cặp trên mặt phẳng xích đạo và nối với thoi tơ vô sắc tại tâm động theo nhiều kiểu sắp xếp.
+ Ở kì sau I: mỗi NST ở dạng kép trong cặp tương đồng kép phân li về 2 cực tế bào, hình thành các tế bào có bộ NST đơn ở trạng thái kép.
+ Ở kì cuối I: tạo 2 tế bào con chứa bộ NST đơn ở trạng thái kép, khác nhau về nguồn gốc, chất lượng NST.
- Giảm phân II: ở lần này, kì trung gian trải qua rất ngắn ở kì giữa II, các NST đơn ở trạng thái kép trong mỗi tế bào tập trung trên mặt phẳng xích đạo nối với thoi tơ vô sắc. Kì sau II, mỗi cromatit trong mỗi NST đơn ở trạng thái kép phân li về 2 cực. Kì cuối II tạo ra các tế bào đơn bội. Từ một tế bào sinh tinh trùng tạo ra 4 tinh trùng, từ 1 tế bào sinh trứng tạo ra 1 trứng và 3 thể định hướng.
2. Cơ chế hình thành bộ NST 2n
- Qua nguyên phân:
+ Ở kì trung gian: mỗi NST đơn tháo xoắn cực đại ở dạng sợi mảnh, ADN nhân đôi để tạo ra các NST kép.
+ Kì trước: NST xoắn lại, cuối kì trước màng nhân mất, thoi vô sắc bắt đầu hình thành.
+ Kì giữa: thoi vô sắc hình thành xong, NST kép tập trung trên mặt phẳng xích đạo nối với dây tơ vô sắc tại tâm động.
+ Kì sau: mỗi cromatit trong từng NST kép tách nhau qua tâm động phân chia về 2 cực tế bào.
+ Kì cuối: các NST đơn giãn xoắn cực đại, màng nhân hình thành, mỗi tế bào chứa bộ NST lưỡng bội (2n)
- Qua giảm phân không bình thường:
Các tế bào sinh tinh trùng hoặc sinh trứng nếu bị tác động của các nhân tố phóng xạ, hoá học… làm cắt đứt thoi tơ vô sắc hoặc ức chế hình thình thoi tơ vô sắc trên toàn bộ bộ NST sẽ tạo nên các giao tử lưỡng bội.
- Qua cơ chế thụ tinh:
Sự kết hợp giữa tinh rùng đơn bội và trứng đơn bội qua thụ tinh sẽ tạo nên hợp tử lưỡng bội (2n).
3. Cơ chế hình thành bộ NST 3n, 4n
- Tế bào 2n giảm phân do rối loạn phân bào (thoi tơ vô sắc bị cắt hoặc được hình thành) xảy ra trên tất cả các cặp NST sẽ tạo nên giao tử 2n. Giao tử này kết hợp với giao tử bình thường n sẽ tạo nên hợp tử 3n.
- Các giao tử không bình thường 2n kết hợp với nhau sẽ tạo nên hợp tử 4n.
- Ngoài ra dạng 3n còn được hình thành trong cơ chế thụ tinh kép (ở thực vật) do nhân thứu cấp 2n kết hợp với một tinh tử n trong hạt phấn chín tạo nên nội nhũ 3n.
- Dạng tế bào 4n, còn được hình thành do nguyên phân rối loạn xảy ra trên tất cả các cặp NST sau khi nhân đôi.

III. Ý NGHĨA SINH HỌC VÀ MỐI LIÊN QUAN GIỮA NGUYÊN PHÂN, GIẢM PHÂN, THỤ TINH.

1. Ý nghĩa sinh học của nguyên phân, giảm phân và thụ tinh
a) Ý nghĩa của nguyên phân và giảm phân
- Nguyên phân: ổn định bộ NST qua các thế hệ tế bào của cùng một cơ thể, tăng nhanh sinh khối tế bào đảm bảo phân hoá mô, cơ quan tạo ra cơ thể.
- Giảm phân: đảm bảo sự kết tục vật chất di truyền ổn định tương đối qua các thế hệ.
b) Ý nghĩa của thụ tinh
Phục hồi lại bộ NST lưỡng bội do sự kết hợp giữa giao tử đực (n) với giao tử cái (n). Mặt khác trong thụ tinh do sự phối hợp ngẫu nhiên của các loại giao tử khác giới tính mà cũng tạo nên nhiều kiểu hợp tử khác nhau về nguồn gốc và chất lượng bộ NST làm tăng tần số các loại biến dị tổ hợp.
2. Mối liên quan giữa nguyên phân, giảm phân và thụ tinh trong quá trình truyền đạt thông tin di truyền
- Nhờ nguyên phân mà các thế hệ tế bào khác nhau vẫn chứa đựng các thông tin di truyền giống nhau, đặc trưng cho loài.
- Nhờ giảm phân mà tạo nên các giao tử đơn bội để khi thụ tinh sẽ khôi phục lại trạng thái lưỡng bội.
- Nhờ thụ tinh đã kết hợp bộ NST đơn bội trong tinh trùng với bộ NST đơn bội trong trứng để hình thành bộ NST 2n, đảm bảo việc truyền thông tin di truyền từ bố mẹ cho con cái ổn định tương đối.
- Nhờ sự kết hợp 3 quá trình trên mà tạo điều kiện cho các đột biến có thể lan rộng chậm chạp trong loài để có dịp biểu hiện thành kiểu hình đột biến.

IV. ĐỘT BIẾN CẤU TRÚC NST

1. Khái niệm
Đột biến cấu trúc NST là những biến đổi đột ngột trong cấu trúc của NST do tác nhân gây đột biến làm thay đổi cấu trúc NST tạo ra những tính trạng mới.
2. Nguyên nhân
Do tác nhân gây đột biến lí hoá trong môi trường hoặc những biến đổi sinh lí nội bào làm phá vỡ cấu trúc NST ảnh hưởng tới quá trình tái bản, tiếp hợp, trao đổi chéo của NST.
3. Cơ chế và hậu quả
Đột biến cấu trúc NST gồm các dạng : mất đoạn, lặp đoạn, đảo đoạn, chuyển đoạn.
- Mất đoạn: Một đoạn NST bị đứt ra làm giảm số lượng gen trên NST. Đoạn bị mất có thể ở phía ngoài hoặc phía trong của cánh. Đột mất đoạn thường giảm sức sống hoặc gây chết. Ví dụ, mất đoạn cặp 21 ở người gây ung thư máu.
- Lặp đoạn: Một đoạn NST nào đó được lặp lại một lần hay nhiều lần làm tăng số lượng gen cùng loại. Đột biến lặp đoạn có thể do đoạn NST bị đứt được nối xen vào NST tương đồng hoặc do NSt tiếp hợp không bình thường, do trao đổi chéo không đều giữa các cromatit. Đột biến lặp đoạn có thể làm tăng cường hay giảm sút sức biểu hiện tính trạng. Ví dụ, lặp đoạn 16A ở ruồi giấm làm cho mắt hình cầu thành mắt dẹt, càng lặp nhiều đoạn mắt càng dẹt.
- Đảo đoạn: Một đoạn NST bị đứt rồi quay ngược lại 180° và gắn vào chỗ bị đứt làm thay đổi trật tự phân bố gen trên NST. Đoạn bị đảo ngược có thể mang tâm động hoặc không. Đột biến đảo đoạn NST ít ảnh hưởng tới sức sống của cơ thể vì vật chất di truyền không bị mất đi. Sự đảo đoạn NST tạo nên sự đa dạng giữa các nòi trong phạm vi một loài.
- Chuyển đoạn: Một đoạn NST này bị dứt ra và gắn vào một NST khác hoặc cả 2 NST khác cặp cùng đứt một đoạn nào đó rồi lại trao đổi đoạn bị đứt với nhau, các đoạn trao đổi có thể tương đồng hoặc không tương đồng. Như vậy có thể thấy có 2 kiểu chuyển đoạn là chuyển đoạn tương hỗ và chuyển đoạn không tương hỗ. sự chuyển đoạn làm phân bố lại các gen trong phạm vi một cặp NST hay giữa các NST khác nhau tạo ra nhóm gen liên kết mới. Chuyển đoạn lớn thường gây chết hoặc làm mất khả năng sinh sản. Người ta gặp sự chuyển đoạn nhỏ ở đầu lúa, chuối, đậu trong thiên nhiên. Trong thực nghiệm người ta đã chuyển gen cố định nitơ của vi khuẩn vào hệ gen hướng hương tạo ra giống hướng hương có nitơ cao trong dầu.

V. ĐỘT BIẾN SỐ LƯỢNG NST

1. Khái niệm
Đột biến số lượng NST là hiện tượng bộ NST của loài tăng lên một số nguyên lần bộ đơn bội (tạo thể đa bội) hoặc tăng lên hay giảm đi một hay một số cặp NST sẽ tạo nên thể dị bội.
2. Thể dị bội
Thể dị bội gồm có: thể ba nhiễm, thể đa nhiễm, thể một nhiễm, thể khuyết nhiễm. Các đột biến dị bội đa phần gây nên hậu quả có hại ở động vật. Ví dụ, ở người có 3 NST 21, xuất hiện hội chứng Đao, tuổi sinh đẻ người mẹ càng cao tỉ lệ mắc hội chứng Đao càng nhiều
Ngoài ra, còn gặp hội chứng XXX, XO, XXY, OY đều gây nên hậu quả có hại.
3. Thể đa bội
Có 2 dạng đa bội : đa bội chẵn và đa bội lẻ
- Đa bội chẵn được hình thành bằng cơ chế nguyên phân rối loạn trên toàn bộ bộ NST 2n sẽ tạo nên dạng 4n, hoặc do kết hợp giữa 2 loại giao tử lưỡng bội không bình thường với nhau.
- Đa bội lẻ được hình thành là do sự kết hợp giữa giao tử 2n không bình thường với giao tử n hình thành thể đa bội lẻ 3n.
- Cơ thể đa bội có hàm lượng ADN tăng gấp bội dẫn tới trao đổi chất tăng cường, cơ thể đa bội tế bào kích thước lớn, cơ quan sinh dưỡng, sinh sản to, chống chịu tốt với điều kiện bất lợi của môi trường.
- Cơ thể đa bội lẻ không có khả năng sinh sản hữu tính vì quá trình giảm phân bị trở ngại. Muốn duy trì phải nhân bằng con đường sinh sản sinh dưỡng.
- Thể đa bội khá phổ biến ở thực vật, ở động vật giao phối thường rất ít gặp. 


Related Posts
Diệp Quân
Nguyen Manh Cuong is the author and founder of the vmwareplayerfree blog. With over 14 years of experience in Online Marketing, he now runs a number of successful websites, and occasionally shares his experience & knowledge on this blog.
SHARE

Related Posts

Subscribe to get free updates

Post a Comment

Sticky